fbpx

Bài viết

Tham khảo các bài viết của trung tâm để lựa chọn đúng dịch vụ

Các dạng toán tiếp tuyến của đồ thị hàm số

I. KIẾN THỨC CẦN NHỚ II. MỘT SỐ DẠNG BÀI TẬP THƯỜNG GẶP
+ Dạng 1. Viết phương trình tiếp tuyến khi biết tiếp điểm
+ Dạng 2. Viết phương trình tiếp tuyến khi biết phương (biết hệ số góc k)
+ Dạng 3. Viết phương trình tiếp tuyến khi biết tiếp tuyến đi qua một điểm cho trước
+ Dạng 4. Một số bài toán chứa tham số III. CÂU HỎI TRẮC NGHIỆM RÈN LUYỆN (có đáp án và lời giải chi tiết) Nguồn: Cao Tuấn

I. Kiến thức cần nhớ

Ý nghĩa hình học của đạo hàm: Đạo hàm của hàm số y=f(x)y=f(x) tại điểm x0x0 là hệ số góc của tiếp tuyến với đồ thị (C)(C) của hàm số tai điểm M(x0;y0)M(x0;y0) .

Khi đó phương trình tiếp tuyến của (C)(C) tại điểm M(x0;y0)M(x0;y0) là y=y′(x0)(x−x0)+y0y=y′(x0)(x−x0)+y0

Nguyên tắc chung để lập được phương trình tiếp tuyến ta phải tìm được hoành độ tiếp điểm x0x0

II. Một số dạng bài tập thường gặp

Dạng 1: Viết phương trình tiếp tuyến khi biết tiếp điểm

1. Phương pháp:

I. Kiến thức cần nhớ

Ý nghĩa hình học của đạo hàm: Đạo hàm của hàm số y=f(x)y=f(x) tại điểm x0x0 là hệ số góc của tiếp tuyến với đồ thị (C)(C) của hàm số tai điểm M(x0;y0)M(x0;y0).

Khi đó phương trình tiếp tuyến của (C)(C) tại điểm M(x0;y0)M(x0;y0) là y=y′(x0)(x−x0)+y0y=y′(x0)(x−x0)+y0

Nguyên tắc chung để lập được phương trình tiếp tuyến ta phải tìm được hoành độ tiếp điểm x0x0

Xem thêm:   Các Bài Tập Cung Và Góc Lượng Giác Lớp 10 Cơ Bản Và Nâng Cao

II. Một số dạng bài tập thường gặp

Dạng 1: Viết phương trình tiếp tuyến khi biết tiếp điểm

1. Phương pháp:

phương trình tiếp tuyến 1
phương trình tiếp tuyến 1
phương trình tiếp tuyến 2
phương trình tiếp tuyến 3
phương trình tiếp tuyến 4
phương trình tiếp tuyến 5
phương trình tiếp tuyến 6
phương trình tiếp tuyến 7
phương trình tiếp tuyến 8
phương trình tiếp tuyến 10
phương trình tiếp tuyến 11
phương trình tiếp tuyến 12
phương trình tiếp tuyến 13
phương trình tiếp tuyến 14

DMCA.com Protection Status